Antarctica research published

On March 23rd, research on the microbial variation across a 5500 km transect of Antarctic surface sediment that Dr. Thrash and I had worked on with Dr. Deric Learman from Central Michigan University was finally published in Frontiers in Microbiology under the special topic: Microbiology of the rapidly changing polar environments. Since then, the article has had >1200 views from around the globe and was one of the top ten articles in Frontiers in Microbiology for the month of March. The research began when I was a Masters student in Dr. Learman’s lab. When I came here to LSU, Dr. Thrash was added to the project. This research would of never happened without the help of Dr. Andrew Mahon (CMU), Dr. Scott Santos (Auburn), Dr. Kenneth Halanych (Auburn), and Dr. Pamala Brannock (Auburn). Each one helped collect our sediment samples while they were out to sea doing their own research. I’d also like to thank Dr. Ben Temperton (University of Exeter) who helped with our analyzes.  We are excited to finally have it published!

Here is a quick blurb on it:

Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that harbors under explored levels of biodiversity. Our work focuses on the seemingly “invisible” inhabitants of the ocean floor that boarder the western and peninsula portion of the Antarctic continent.   While microorganisms are the smallest forms of life on Earth, they are abundant (typically more than 10 million cells per gram of sediment) and influence the cycling of important nutrient such as carbon and nitrogen. They also represent the foundation of the food chain that supports larger and more complex forms of life. To study this environment, ocean sediment samples from the continental shelf of western Antarctica were collected over a 5,500 km transect from the Ross Sea to the Weddell Sea. By using 16S and 18S rRNA amplicon sequencing, this work has shown these sediments to be incredibly diverse and were distinguished by their correlations to organic matter and stable isotope fractions (TN, δ13C, etc.). Our work further demonstrates the versatility of marine microbial life and its ability to persist at near zero temperatures as well as greatly increases the available information for this region.

Learman, Deric R., Michael W. Henson, J. Cameron Thrash, Ben Temperton, Pamela M. Brannock, Scott R. Santos, Andrew R. Mahon, and Kenneth M. Halanych. (2016)
 Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structureFrontiers in Microbiology7:284. doi: 10.3389/fmicb.2016.00284

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s